3.59 \(\int \frac {x (a+b \csc ^{-1}(c x))}{\sqrt {d+e x}} \, dx\)

Optimal. Leaf size=344 \[ -\frac {2 d \sqrt {d+e x} \left (a+b \csc ^{-1}(c x)\right )}{e^2}+\frac {2 (d+e x)^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^2}+\frac {8 b d^2 \sqrt {1-c^2 x^2} \sqrt {\frac {c (d+e x)}{c d+e}} \Pi \left (2;\sin ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {2}}\right )|\frac {2 e}{c d+e}\right )}{3 c e^2 x \sqrt {1-\frac {1}{c^2 x^2}} \sqrt {d+e x}}+\frac {8 b d \sqrt {1-c^2 x^2} \sqrt {\frac {c (d+e x)}{c d+e}} F\left (\sin ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {2}}\right )|\frac {2 e}{c d+e}\right )}{3 c^2 e x \sqrt {1-\frac {1}{c^2 x^2}} \sqrt {d+e x}}-\frac {4 b \sqrt {1-c^2 x^2} \sqrt {d+e x} E\left (\sin ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {2}}\right )|\frac {2 e}{c d+e}\right )}{3 c^2 e x \sqrt {1-\frac {1}{c^2 x^2}} \sqrt {\frac {c (d+e x)}{c d+e}}} \]

[Out]

2/3*(e*x+d)^(3/2)*(a+b*arccsc(c*x))/e^2-2*d*(a+b*arccsc(c*x))*(e*x+d)^(1/2)/e^2-4/3*b*EllipticE(1/2*(-c*x+1)^(
1/2)*2^(1/2),2^(1/2)*(e/(c*d+e))^(1/2))*(e*x+d)^(1/2)*(-c^2*x^2+1)^(1/2)/c^2/e/x/(1-1/c^2/x^2)^(1/2)/(c*(e*x+d
)/(c*d+e))^(1/2)+8/3*b*d*EllipticF(1/2*(-c*x+1)^(1/2)*2^(1/2),2^(1/2)*(e/(c*d+e))^(1/2))*(c*(e*x+d)/(c*d+e))^(
1/2)*(-c^2*x^2+1)^(1/2)/c^2/e/x/(1-1/c^2/x^2)^(1/2)/(e*x+d)^(1/2)+8/3*b*d^2*EllipticPi(1/2*(-c*x+1)^(1/2)*2^(1
/2),2,2^(1/2)*(e/(c*d+e))^(1/2))*(c*(e*x+d)/(c*d+e))^(1/2)*(-c^2*x^2+1)^(1/2)/c/e^2/x/(1-1/c^2/x^2)^(1/2)/(e*x
+d)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 1.60, antiderivative size = 344, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 13, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.684, Rules used = {43, 5247, 12, 6721, 6742, 719, 424, 944, 419, 932, 168, 538, 537} \[ -\frac {2 d \sqrt {d+e x} \left (a+b \csc ^{-1}(c x)\right )}{e^2}+\frac {2 (d+e x)^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^2}+\frac {8 b d^2 \sqrt {1-c^2 x^2} \sqrt {\frac {c (d+e x)}{c d+e}} \Pi \left (2;\sin ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {2}}\right )|\frac {2 e}{c d+e}\right )}{3 c e^2 x \sqrt {1-\frac {1}{c^2 x^2}} \sqrt {d+e x}}+\frac {8 b d \sqrt {1-c^2 x^2} \sqrt {\frac {c (d+e x)}{c d+e}} F\left (\sin ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {2}}\right )|\frac {2 e}{c d+e}\right )}{3 c^2 e x \sqrt {1-\frac {1}{c^2 x^2}} \sqrt {d+e x}}-\frac {4 b \sqrt {1-c^2 x^2} \sqrt {d+e x} E\left (\sin ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {2}}\right )|\frac {2 e}{c d+e}\right )}{3 c^2 e x \sqrt {1-\frac {1}{c^2 x^2}} \sqrt {\frac {c (d+e x)}{c d+e}}} \]

Antiderivative was successfully verified.

[In]

Int[(x*(a + b*ArcCsc[c*x]))/Sqrt[d + e*x],x]

[Out]

(-2*d*Sqrt[d + e*x]*(a + b*ArcCsc[c*x]))/e^2 + (2*(d + e*x)^(3/2)*(a + b*ArcCsc[c*x]))/(3*e^2) - (4*b*Sqrt[d +
 e*x]*Sqrt[1 - c^2*x^2]*EllipticE[ArcSin[Sqrt[1 - c*x]/Sqrt[2]], (2*e)/(c*d + e)])/(3*c^2*e*Sqrt[1 - 1/(c^2*x^
2)]*x*Sqrt[(c*(d + e*x))/(c*d + e)]) + (8*b*d*Sqrt[(c*(d + e*x))/(c*d + e)]*Sqrt[1 - c^2*x^2]*EllipticF[ArcSin
[Sqrt[1 - c*x]/Sqrt[2]], (2*e)/(c*d + e)])/(3*c^2*e*Sqrt[1 - 1/(c^2*x^2)]*x*Sqrt[d + e*x]) + (8*b*d^2*Sqrt[(c*
(d + e*x))/(c*d + e)]*Sqrt[1 - c^2*x^2]*EllipticPi[2, ArcSin[Sqrt[1 - c*x]/Sqrt[2]], (2*e)/(c*d + e)])/(3*c*e^
2*Sqrt[1 - 1/(c^2*x^2)]*x*Sqrt[d + e*x])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 168

Int[1/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x_Sym
bol] :> Dist[-2, Subst[Int[1/(Simp[b*c - a*d - b*x^2, x]*Sqrt[Simp[(d*e - c*f)/d + (f*x^2)/d, x]]*Sqrt[Simp[(d
*g - c*h)/d + (h*x^2)/d, x]]), x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && GtQ[(d*e - c
*f)/d, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 537

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(1*Ellipt
icPi[(b*c)/(a*d), ArcSin[Rt[-(d/c), 2]*x], (c*f)/(d*e)])/(a*Sqrt[c]*Sqrt[e]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b,
 c, d, e, f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && SimplerSqrtQ[-(f/e), -(d/c)
])

Rule 538

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 +
(d*x^2)/c]/Sqrt[c + d*x^2], Int[1/((a + b*x^2)*Sqrt[1 + (d*x^2)/c]*Sqrt[e + f*x^2]), x], x] /; FreeQ[{a, b, c,
 d, e, f}, x] &&  !GtQ[c, 0]

Rule 719

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*a*Rt[-(c/a), 2]*(d + e*x)^m*Sqrt[
1 + (c*x^2)/a])/(c*Sqrt[a + c*x^2]*((c*(d + e*x))/(c*d - a*e*Rt[-(c/a), 2]))^m), Subst[Int[(1 + (2*a*e*Rt[-(c/
a), 2]*x^2)/(c*d - a*e*Rt[-(c/a), 2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-(c/a), 2]*x)/2]], x] /; FreeQ[{a,
 c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 932

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[-(c
/a), 2]}, Dist[1/Sqrt[a], Int[1/((d + e*x)*Sqrt[f + g*x]*Sqrt[1 - q*x]*Sqrt[1 + q*x]), x], x]] /; FreeQ[{a, c,
 d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[c*d^2 + a*e^2, 0] && GtQ[a, 0]

Rule 944

Int[Sqrt[(f_.) + (g_.)*(x_)]/(((d_.) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[g/e, Int[1/(S
qrt[f + g*x]*Sqrt[a + c*x^2]), x], x] + Dist[(e*f - d*g)/e, Int[1/((d + e*x)*Sqrt[f + g*x]*Sqrt[a + c*x^2]), x
], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[c*d^2 + a*e^2, 0]

Rule 5247

Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))*(u_), x_Symbol] :> With[{v = IntHide[u, x]}, Dist[a + b*ArcCsc[c*x], v,
 x] + Dist[b/c, Int[SimplifyIntegrand[v/(x^2*Sqrt[1 - 1/(c^2*x^2)]), x], x], x] /; InverseFunctionFreeQ[v, x]]
 /; FreeQ[{a, b, c}, x]

Rule 6721

Int[(u_.)*((a_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(b^IntPart[p]*(a + b*x^n)^FracPart[p])/(x^(n*FracP
art[p])*(1 + a/(x^n*b))^FracPart[p]), Int[u*x^(n*p)*(1 + a/(x^n*b))^p, x], x] /; FreeQ[{a, b, p}, x] &&  !Inte
gerQ[p] && ILtQ[n, 0] &&  !RationalFunctionQ[u, x] && IntegerQ[p + 1/2]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

\begin {align*} \int \frac {x \left (a+b \csc ^{-1}(c x)\right )}{\sqrt {d+e x}} \, dx &=-\frac {2 d \sqrt {d+e x} \left (a+b \csc ^{-1}(c x)\right )}{e^2}+\frac {2 (d+e x)^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^2}+\frac {b \int \frac {2 (-2 d+e x) \sqrt {d+e x}}{3 e^2 \sqrt {1-\frac {1}{c^2 x^2}} x^2} \, dx}{c}\\ &=-\frac {2 d \sqrt {d+e x} \left (a+b \csc ^{-1}(c x)\right )}{e^2}+\frac {2 (d+e x)^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^2}+\frac {(2 b) \int \frac {(-2 d+e x) \sqrt {d+e x}}{\sqrt {1-\frac {1}{c^2 x^2}} x^2} \, dx}{3 c e^2}\\ &=-\frac {2 d \sqrt {d+e x} \left (a+b \csc ^{-1}(c x)\right )}{e^2}+\frac {2 (d+e x)^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^2}+\frac {\left (2 b \sqrt {1-c^2 x^2}\right ) \int \frac {(-2 d+e x) \sqrt {d+e x}}{x \sqrt {1-c^2 x^2}} \, dx}{3 c e^2 \sqrt {1-\frac {1}{c^2 x^2}} x}\\ &=-\frac {2 d \sqrt {d+e x} \left (a+b \csc ^{-1}(c x)\right )}{e^2}+\frac {2 (d+e x)^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^2}+\frac {\left (2 b \sqrt {1-c^2 x^2}\right ) \int \left (\frac {e \sqrt {d+e x}}{\sqrt {1-c^2 x^2}}-\frac {2 d \sqrt {d+e x}}{x \sqrt {1-c^2 x^2}}\right ) \, dx}{3 c e^2 \sqrt {1-\frac {1}{c^2 x^2}} x}\\ &=-\frac {2 d \sqrt {d+e x} \left (a+b \csc ^{-1}(c x)\right )}{e^2}+\frac {2 (d+e x)^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^2}-\frac {\left (4 b d \sqrt {1-c^2 x^2}\right ) \int \frac {\sqrt {d+e x}}{x \sqrt {1-c^2 x^2}} \, dx}{3 c e^2 \sqrt {1-\frac {1}{c^2 x^2}} x}+\frac {\left (2 b \sqrt {1-c^2 x^2}\right ) \int \frac {\sqrt {d+e x}}{\sqrt {1-c^2 x^2}} \, dx}{3 c e \sqrt {1-\frac {1}{c^2 x^2}} x}\\ &=-\frac {2 d \sqrt {d+e x} \left (a+b \csc ^{-1}(c x)\right )}{e^2}+\frac {2 (d+e x)^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^2}-\frac {\left (4 b d^2 \sqrt {1-c^2 x^2}\right ) \int \frac {1}{x \sqrt {d+e x} \sqrt {1-c^2 x^2}} \, dx}{3 c e^2 \sqrt {1-\frac {1}{c^2 x^2}} x}-\frac {\left (4 b d \sqrt {1-c^2 x^2}\right ) \int \frac {1}{\sqrt {d+e x} \sqrt {1-c^2 x^2}} \, dx}{3 c e \sqrt {1-\frac {1}{c^2 x^2}} x}-\frac {\left (4 b \sqrt {d+e x} \sqrt {1-c^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {1+\frac {2 c e x^2}{-c^2 d-c e}}}{\sqrt {1-x^2}} \, dx,x,\frac {\sqrt {1-c x}}{\sqrt {2}}\right )}{3 c^2 e \sqrt {1-\frac {1}{c^2 x^2}} x \sqrt {-\frac {c^2 (d+e x)}{-c^2 d-c e}}}\\ &=-\frac {2 d \sqrt {d+e x} \left (a+b \csc ^{-1}(c x)\right )}{e^2}+\frac {2 (d+e x)^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^2}-\frac {4 b \sqrt {d+e x} \sqrt {1-c^2 x^2} E\left (\sin ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {2}}\right )|\frac {2 e}{c d+e}\right )}{3 c^2 e \sqrt {1-\frac {1}{c^2 x^2}} x \sqrt {\frac {c (d+e x)}{c d+e}}}-\frac {\left (4 b d^2 \sqrt {1-c^2 x^2}\right ) \int \frac {1}{x \sqrt {1-c x} \sqrt {1+c x} \sqrt {d+e x}} \, dx}{3 c e^2 \sqrt {1-\frac {1}{c^2 x^2}} x}+\frac {\left (8 b d \sqrt {-\frac {c^2 (d+e x)}{-c^2 d-c e}} \sqrt {1-c^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+\frac {2 c e x^2}{-c^2 d-c e}}} \, dx,x,\frac {\sqrt {1-c x}}{\sqrt {2}}\right )}{3 c^2 e \sqrt {1-\frac {1}{c^2 x^2}} x \sqrt {d+e x}}\\ &=-\frac {2 d \sqrt {d+e x} \left (a+b \csc ^{-1}(c x)\right )}{e^2}+\frac {2 (d+e x)^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^2}-\frac {4 b \sqrt {d+e x} \sqrt {1-c^2 x^2} E\left (\sin ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {2}}\right )|\frac {2 e}{c d+e}\right )}{3 c^2 e \sqrt {1-\frac {1}{c^2 x^2}} x \sqrt {\frac {c (d+e x)}{c d+e}}}+\frac {8 b d \sqrt {\frac {c (d+e x)}{c d+e}} \sqrt {1-c^2 x^2} F\left (\sin ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {2}}\right )|\frac {2 e}{c d+e}\right )}{3 c^2 e \sqrt {1-\frac {1}{c^2 x^2}} x \sqrt {d+e x}}+\frac {\left (8 b d^2 \sqrt {1-c^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (1-x^2\right ) \sqrt {2-x^2} \sqrt {d+\frac {e}{c}-\frac {e x^2}{c}}} \, dx,x,\sqrt {1-c x}\right )}{3 c e^2 \sqrt {1-\frac {1}{c^2 x^2}} x}\\ &=-\frac {2 d \sqrt {d+e x} \left (a+b \csc ^{-1}(c x)\right )}{e^2}+\frac {2 (d+e x)^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^2}-\frac {4 b \sqrt {d+e x} \sqrt {1-c^2 x^2} E\left (\sin ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {2}}\right )|\frac {2 e}{c d+e}\right )}{3 c^2 e \sqrt {1-\frac {1}{c^2 x^2}} x \sqrt {\frac {c (d+e x)}{c d+e}}}+\frac {8 b d \sqrt {\frac {c (d+e x)}{c d+e}} \sqrt {1-c^2 x^2} F\left (\sin ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {2}}\right )|\frac {2 e}{c d+e}\right )}{3 c^2 e \sqrt {1-\frac {1}{c^2 x^2}} x \sqrt {d+e x}}+\frac {\left (8 b d^2 \sqrt {\frac {c (d+e x)}{c d+e}} \sqrt {1-c^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (1-x^2\right ) \sqrt {2-x^2} \sqrt {1-\frac {e x^2}{c \left (d+\frac {e}{c}\right )}}} \, dx,x,\sqrt {1-c x}\right )}{3 c e^2 \sqrt {1-\frac {1}{c^2 x^2}} x \sqrt {d+e x}}\\ &=-\frac {2 d \sqrt {d+e x} \left (a+b \csc ^{-1}(c x)\right )}{e^2}+\frac {2 (d+e x)^{3/2} \left (a+b \csc ^{-1}(c x)\right )}{3 e^2}-\frac {4 b \sqrt {d+e x} \sqrt {1-c^2 x^2} E\left (\sin ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {2}}\right )|\frac {2 e}{c d+e}\right )}{3 c^2 e \sqrt {1-\frac {1}{c^2 x^2}} x \sqrt {\frac {c (d+e x)}{c d+e}}}+\frac {8 b d \sqrt {\frac {c (d+e x)}{c d+e}} \sqrt {1-c^2 x^2} F\left (\sin ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {2}}\right )|\frac {2 e}{c d+e}\right )}{3 c^2 e \sqrt {1-\frac {1}{c^2 x^2}} x \sqrt {d+e x}}+\frac {8 b d^2 \sqrt {\frac {c (d+e x)}{c d+e}} \sqrt {1-c^2 x^2} \Pi \left (2;\sin ^{-1}\left (\frac {\sqrt {1-c x}}{\sqrt {2}}\right )|\frac {2 e}{c d+e}\right )}{3 c e^2 \sqrt {1-\frac {1}{c^2 x^2}} x \sqrt {d+e x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 1.51, size = 289, normalized size = 0.84 \[ \frac {2 \left (a \sqrt {d+e x} (e x-2 d)+\frac {2 i b \sqrt {\frac {e (c x+1)}{e-c d}} \sqrt {\frac {e-c e x}{c d+e}} \left ((c d+e) F\left (i \sinh ^{-1}\left (\sqrt {-\frac {c}{c d+e}} \sqrt {d+e x}\right )|\frac {c d+e}{c d-e}\right )+(c d-e) E\left (i \sinh ^{-1}\left (\sqrt {-\frac {c}{c d+e}} \sqrt {d+e x}\right )|\frac {c d+e}{c d-e}\right )-2 c d \Pi \left (\frac {e}{c d}+1;i \sinh ^{-1}\left (\sqrt {-\frac {c}{c d+e}} \sqrt {d+e x}\right )|\frac {c d+e}{c d-e}\right )\right )}{c^2 x \sqrt {1-\frac {1}{c^2 x^2}} \sqrt {-\frac {c}{c d+e}}}+b \csc ^{-1}(c x) \sqrt {d+e x} (e x-2 d)\right )}{3 e^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*(a + b*ArcCsc[c*x]))/Sqrt[d + e*x],x]

[Out]

(2*(a*(-2*d + e*x)*Sqrt[d + e*x] + b*(-2*d + e*x)*Sqrt[d + e*x]*ArcCsc[c*x] + ((2*I)*b*Sqrt[(e*(1 + c*x))/(-(c
*d) + e)]*Sqrt[(e - c*e*x)/(c*d + e)]*((c*d - e)*EllipticE[I*ArcSinh[Sqrt[-(c/(c*d + e))]*Sqrt[d + e*x]], (c*d
 + e)/(c*d - e)] + (c*d + e)*EllipticF[I*ArcSinh[Sqrt[-(c/(c*d + e))]*Sqrt[d + e*x]], (c*d + e)/(c*d - e)] - 2
*c*d*EllipticPi[1 + e/(c*d), I*ArcSinh[Sqrt[-(c/(c*d + e))]*Sqrt[d + e*x]], (c*d + e)/(c*d - e)]))/(c^2*Sqrt[-
(c/(c*d + e))]*Sqrt[1 - 1/(c^2*x^2)]*x)))/(3*e^2)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arccsc(c*x))/(e*x+d)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \operatorname {arccsc}\left (c x\right ) + a\right )} x}{\sqrt {e x + d}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arccsc(c*x))/(e*x+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arccsc(c*x) + a)*x/sqrt(e*x + d), x)

________________________________________________________________________________________

maple [A]  time = 0.07, size = 412, normalized size = 1.20 \[ \frac {2 a \left (\frac {\left (e x +d \right )^{\frac {3}{2}}}{3}-d \sqrt {e x +d}\right )+2 b \left (\frac {\left (e x +d \right )^{\frac {3}{2}} \mathrm {arccsc}\left (c x \right )}{3}-\mathrm {arccsc}\left (c x \right ) d \sqrt {e x +d}-\frac {2 \left (d \EllipticF \left (\sqrt {e x +d}\, \sqrt {\frac {c}{d c -e}}, \sqrt {\frac {d c -e}{d c +e}}\right ) c +\EllipticE \left (\sqrt {e x +d}\, \sqrt {\frac {c}{d c -e}}, \sqrt {\frac {d c -e}{d c +e}}\right ) c d -2 d \EllipticPi \left (\sqrt {e x +d}\, \sqrt {\frac {c}{d c -e}}, \frac {d c -e}{c d}, \frac {\sqrt {\frac {c}{d c +e}}}{\sqrt {\frac {c}{d c -e}}}\right ) c -\EllipticF \left (\sqrt {e x +d}\, \sqrt {\frac {c}{d c -e}}, \sqrt {\frac {d c -e}{d c +e}}\right ) e +\EllipticE \left (\sqrt {e x +d}\, \sqrt {\frac {c}{d c -e}}, \sqrt {\frac {d c -e}{d c +e}}\right ) e \right ) \sqrt {-\frac {\left (e x +d \right ) c -d c -e}{d c +e}}\, \sqrt {-\frac {\left (e x +d \right ) c -d c +e}{d c -e}}}{3 c^{2} \sqrt {\frac {c}{d c -e}}\, x \sqrt {\frac {c^{2} \left (e x +d \right )^{2}-2 c^{2} d \left (e x +d \right )+c^{2} d^{2}-e^{2}}{c^{2} e^{2} x^{2}}}}\right )}{e^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a+b*arccsc(c*x))/(e*x+d)^(1/2),x)

[Out]

2/e^2*(a*(1/3*(e*x+d)^(3/2)-d*(e*x+d)^(1/2))+b*(1/3*(e*x+d)^(3/2)*arccsc(c*x)-arccsc(c*x)*d*(e*x+d)^(1/2)-2/3/
c^2*(d*EllipticF((e*x+d)^(1/2)*(c/(c*d-e))^(1/2),((c*d-e)/(c*d+e))^(1/2))*c+EllipticE((e*x+d)^(1/2)*(c/(c*d-e)
)^(1/2),((c*d-e)/(c*d+e))^(1/2))*c*d-2*d*EllipticPi((e*x+d)^(1/2)*(c/(c*d-e))^(1/2),1/c*(c*d-e)/d,(c/(c*d+e))^
(1/2)/(c/(c*d-e))^(1/2))*c-EllipticF((e*x+d)^(1/2)*(c/(c*d-e))^(1/2),((c*d-e)/(c*d+e))^(1/2))*e+EllipticE((e*x
+d)^(1/2)*(c/(c*d-e))^(1/2),((c*d-e)/(c*d+e))^(1/2))*e)*(-((e*x+d)*c-d*c-e)/(c*d+e))^(1/2)*(-((e*x+d)*c-d*c+e)
/(c*d-e))^(1/2)/(c/(c*d-e))^(1/2)/x/((c^2*(e*x+d)^2-2*c^2*d*(e*x+d)+c^2*d^2-e^2)/c^2/e^2/x^2)^(1/2)))

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arccsc(c*x))/(e*x+d)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(c*d-e>0)', see `assume?` for m
ore details)Is c*d-e positive or negative?

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {x\,\left (a+b\,\mathrm {asin}\left (\frac {1}{c\,x}\right )\right )}{\sqrt {d+e\,x}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a + b*asin(1/(c*x))))/(d + e*x)^(1/2),x)

[Out]

int((x*(a + b*asin(1/(c*x))))/(d + e*x)^(1/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*acsc(c*x))/(e*x+d)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________